Design The Hallite 50 is a double acting seal designed for light duty applications using either one piece or split pistons to ISO 6547 housings. It comprises a rubber seal, two split support rings and two split bearings, located either side of the seal. The nitrile rubber seal has proved itself to be extremely wear resistant in service. It is designed to be compressed by the housing to ensure a low pressure seal and when pressurised be protected from extrusion damage by the extending lips of the support ring. A tough flexible polymer is used for the support ring which is scarf cut for assembly and to protect the seal from damage. A rectangular reinforced nylon bearing completes the assembly and provides the seal and piston with support and guidance. The proportions of this range of piston seals have been determined to give a satisfactory performance when used with the recommended operating conditions. Note: Other sizes of this design of seal are shown under Hallite 53, 64 and 68. NB: Part numbers suffixed by "‡" indicate housing sizes to meet ISO 6547. ## **Features** - · Compact groove design - Easy assembly - Positive no drift seal # **Technical details** ## **Operating conditions** Maximum Speed Temperature Range Maximum Pressure #### **Surface roughness** Dynamic Sealing Face $\emptyset D_1$ Static Sealing Face $\emptyset d_1 \emptyset d_2$ Static Housing Faces $\emptyset d_3 L_1 L_2$ #### Chamfers & Radii Groove Section \leq S mm Min Chamfer C mm Max Fillet Rad r_1 mm Max Fillet Rad r_2 mm Tolerances mm #### Metric 0.5 m/sec -30°C +100°C 350 bar | μmRa | μmRt | | | | |------------|--------|--|--|--| | 0.1 <> 0.4 | 4 max | | | | | 1.6 max | 10 max | | | | | 3.2 max | 16 max | | | | | | | | | | | 4.0 | 5.0 | |-----|-----| | 2.0 | 2.5 | | 0.4 | 0.4 | | 0.4 | 0.4 | | | | | $\emptyset D_1$ | $\emptyset d_1$ | Ød | |-----------------|-----------------|----| | H10 | h9 | h9 | ## Inch μinCLA 1.5 ft/sec -22°F +212°F 5000 p.s.i. | | 4 < > 16 | 5 < > 18 | |-----------------|----------------|------------| | (| 63 max | 70 max | | | 125 max | 140 max | | | | | | | | | | | 7.5 | 10.0 | | | 4.0 | 5.0 | | (| 0.4 | 0.4 | | (| 0.4 | 0.4 | | | | | | $\emptyset d_3$ | L ₁ | L_2 | | h11 | +0.35 +0 | .1 +0.1 -0 | μinRMS | ØD ₁ | TOL
H10 | Ød ₁ | TOL
h9 | Ød ₂ | TOL
h9 | Ød3 | TOL
h11 | L ₁
+ 0.35 + 0.1 | L ₂
+ 0.1 - 0 | PART
No. | |-----------------|------------|-----------------|-----------|-----------------|-----------|-------|------------|--------------------------------|-----------------------------|-------------| | 25 | +0.08 | 17 | +0.00 | 22.0 | +0.000 | 24.0 | +0.00 | 10.0 | 4.0 | 6607810‡ | | | +0.00 | | -0.04 | | -0.052 | | -0.13 | | | | | 32 | +0.10 | 24 | +0.00 | 29.0 | +0.000 | 31.0 | +0.00 | 10.0 | 4.0 | 6607910‡ | | | +0.00 | | -0.05 | | -0.052 | | -0.16 | | | | | 40 | +0.10 | 32 | +0.00 | 37.0 | +0.000 | 39.0 | +0.00 | 10.0 | 4.0 | 6608010‡ | | | +0.00 | | -0.06 | | -0.062 | | -0.16 | | | | | 50 | +0.10 | 40 | +0.00 | 47.0 | +0.000 | 49.0 | +0.00 | 12.5 | 4.0 | 6608110‡ | | | +0.00 | | -0.06 | | -0.062 | | -0.16 | | | | | 63 | +0.12 | 53 | +0.00 | 60.0 | +0.000 | 62.0 | +0.00 | 12.5 | 4.0 | 2199513‡ | | | +0.00 | | -0.07 | | -0.074 | | -0.19 | | | | | 80 | +0.12 | 65 | +0.00 | 76.0 | +0.000 | 78.5 | +0.00 | 20.0 | 5.0 | 6608210‡ | | | +0.00 | | -0.07 | | -0.074 | | -0.19 | | | | | 100 | +0.14 | 85 | +0.00 | 96.0 | +0.000 | 98.5 | +0.00 | 20.0 | 5.0 | 6608310‡ | | | +0.00 | | -0.09 | | -0.087 | | -0.22 | | | | | 125 | +0.16 | 105 | +0.00 | 120.0 | +0.000 | 123.0 | +0.00 | 25.0 | 6.3 | 6608410‡ | | | +0.00 | | -0.09 | | -0.087 | | -0.25 | | | | | 140 | +0.16 | 120 | +0.00 | 135.0 | +0.000 | 138.0 | +0.00 | 25.0 | 6.3 | 2317030 | | | +0.00 | | -0.09 | | -0.087 | | -0.25 | | | | | 160 | +0.16 | 140 | +0.00 | 155.0 | +0.000 | 158.0 | +0.00 | 25.0 | 6.3 | 6608510‡ | | | +0.00 | | -0.10 | | -0.100 | | -0.25 | | | |