Design

The Hallite 11 is a vee pack rod seal for medium duty applications offering excellent performance and long life even under difficult operating conditions such as pressure surges, vibration and some misalignment. The seal consists of a male and female adaptor and 5 vee rings.

The male adaptor is usually manufactured from polyacetal but some of the larger sizes use rubberised fabric. It has grooves across one face to ensure equal pressure to the sealing edges of the vee ring.

All sizes have three vee rings manufactured from rubberised fabric because this has strength and durability and permits an oil film to lubricate the other parts of the seal. Two rubber vee rings are supplied between the rubberised fabric vee rings (up to and including 140 mm diameter) to aid low pressure sealing.
The female adaptor uses a hard rubberised fabric to support the vee rings and protect them from extrusion damage. At high pressure the lips of the adaptor acts as a secondary seal.

The proportions of the range have been determined to give a satisfactory performance when used with the recommended operating conditions.

Technical details

Operating conditions

Maximum Speed
Temperature Range
Maximum Pressure

Maximum extrusion gap

Pressure bar
Maximum Gap mm
Pressure p.s.i.

Surface roughness

Dynamic Sealing Face Ød d_{1}
Static Sealing Face $\emptyset \mathrm{D}_{1}$
Static Housing Faces L_{1}

Figures show the maximum permissible gap all on one side using minimum rod \emptyset and maximum clearance \varnothing. Refer to Housing Design section.

100	160	250	400
0.45	0.4	0.3	0.2
1500	2400	3750	6000
$\boldsymbol{\mu m R a}$	$\boldsymbol{\mu m R t}$	$\boldsymbol{\mu i n C L A}$	$\boldsymbol{\mu} \mathbf{i n R M S}$
$0.1<>0.4$	4 max	$4<>16$	$5<>18$
1.6 max	10 max	63 max	70 max
3.2 max	16 max	$125 \max$	140 max

Chamfers \& Radii

Groove Section $\leq \mathrm{S} \mathrm{mm}$
Min Chamfer C mm
Max Fillet Rad $r_{1} \mathrm{~mm}$

Tolerances

| | d_{1} | $\emptyset D_{1}$ |
| :--- | :--- | :--- |$L_{1} m m$

$0 d_{1}$	$\begin{aligned} & \text { TOL } \\ & \text { f9 } \end{aligned}$	\square_{1}	TOL H11	$\begin{gathered} L_{1} \\ +0.2-0 \end{gathered}$	PART No.
20	-0.020	30	+0.13	18.50	4201750
	-0.072		+0.00		
25	-0.020	37	+0.16	22.50	4198950
	-0.072		+0.00		
28	-0.020	40	+0.16	22.50	4202050
	-0.072		+0.00		
30	-0.020	42	+0.16	22.50	4202150
	-0.072		+0.00		
32	-0.025	44	+0.16	22.50	4202250
	-0.087		+0.00		
35	-0.025	47	+0.16	22.50	4202350
	-0.087		+0.00		
36	-0.025	48	+0.16	22.50	4202450
	-0.087		+0.00		
40	-0.025	52	+0.19	22.50	4202550
	-0.087		+0.00		
42	-0.025	54	+0.19	22.50	4202650
	-0.087		+0.00		
45	-0.025	60	+0.19	22.50	4202750
	-0.087		+0.00		
50	-0.025	65	+0.19	22.50	4199050
	-0.087		+0.00		
55	-0.030	70	+0.19	22.50	4202950
	-0.104		+0.00		
56	-0.030	71	+0.19	22.50	4203050
	-0.104		+0.00		
60	-0.030	75	+0.19	22.50	4203150
	-0.104		+0.00		
63	-0.030	78	+0.19	22.50	4203250
	-0.104		+0.00		

$0 d_{1}$	$\begin{gathered} \text { TOL } \\ \text { f9 } \end{gathered}$	$\emptyset D_{1}$	TOL H11	$\begin{gathered} \mathrm{L}_{1} \\ +0.2-0 \end{gathered}$	PART No.
65	-0.030	80	+0.19	22.50	4203350
	-0.104		+0.00		
70	-0.030	85	+0.22	22.50	4203450
	-0.104		+0.00		
75	-0.030	90	+0.22	22.50	4203550
	-0.104		+0.00		
80	-0.030	95	+0.22	22.50	4203650
	-0.104		+0.00		
85	-0.036	100	+0.22	22.50	4203750
	-0.123		+0.00		
90	-0.036	105	+0.22	22.50	4203850
	-0.123		+0.00		
100	-0.036	115	+0.22	30.00	4203950
	-0.123		+0.00		
110	-0.036	125	+0.25	30.00	4204050
	-0.123		+0.00		
125	-0.043	140	+0.25	34.00	4204250
	-0.143		+0.00		
140	-0.043	155	+0.25	34.00	4199250
	-0.143		+0.00		
150	-0.043	170	+0.25	40.00	2196650
	-0.143		+0.00		
160	-0.043	180	+0.25	40.00	2196750
	-0.143		+0.00		
180	-0.043	200	+0.29	40.00	2196850
	-0.143		+0.00		
200	-0.050	220	+0.29	40.00	2196950
	-0.165		+0.00		

\qquad

